Measurement error models with uncertainty about the error variance 1 Running head : MEASUREMENT ERROR MODELS WITH UNCERTAINTY ABOUT THE ERROR VARIANCE
نویسنده
چکیده
It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models (SEM) are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the SEM model – allowing for consistent estimation of the relevant regression parameters. In many instances, however, embedding the measurement model into SEM is not possible because the model would not be identified. To correct for measurement error one has no other recourse than to provide the exact values of the variances of the measurement error terms of the model, although in practice such variances cannot be ascertained exactly but only estimated from an independent study. The usual approach so far has been to treat the estimated values of error variances as if they were known exact population values in the subsequent SEM analysis. In this paper we show that fixing measurement error variance estimates as if they were true values can make the reported standard errors of the structural parameters of the model smaller than they should be. Inferences about the parameters of interest will be incorrect if the estimated nature of the variances is not taken into account. For general SEM, we derive an explicit expression that provides the terms to be added to the standard errors provided by the standard SEM software that treats the estimated variances as exact population values. Interestingly, we find there is a differential impact of the corrections to be added to the standard errors depending on which parameter of the model is estimated. The theoretical results are illustrated with simulations and also with empirical data on a typical SEM model.
منابع مشابه
Error Analysis, Design and Modeling of an Improved Heterodyne Nano-Displacement Interferometer
A new heterodyne nano-displacement with error reduction is presented. The main errors affecting the displacement accuracy of the nano-displacement measurement system including intermodulation distortion error, cross-talk error, cross-polarization error and phase detection error are calculated. In the designed system, a He-Ne laser having three-longitudinal-mode is considered as the stabiliz...
متن کاملSimultaneous Monitoring of Multivariate Process Mean and Variability in the Presence of Measurement Error with Linearly Increasing Variance under Additive Covariate Model (RESEARCH NOTE)
In recent years, some researches have been done on simultaneous monitoring of multivariate process mean vector and covariance matrix. However, the effect of measurement error, which exists in many practical applications, on the performance of these control charts is not well studied. In this paper, the effect of measurement error with linearly increasing variance on the performance of ELR contr...
متن کاملSpatial prediction of soil electrical conductivity using soil axillary data, soft data derived from general linear model and error measurement
Indirect measurement of soil electrical conductivity (EC) has become a major data source in spatial/temporal monitoring of soil salinity. However, in many cases, the weak correlation between direct and indirect measurement of EC has reduced the accuracy and performance of the predicted maps. The objective of this research was to estimate soil EC based on a general linear model via using se...
متن کاملRobust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work
The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...
متن کاملTESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کامل